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1. Introduction

1.1. The game. The aim of this essay is to give an overview of some topics concerning a game

called Cops and Robbers, which was introduced independently by Nowakowski and Winkler [3]

and Quillot [4]. Given a graph G, the game goes as follows. We have two players, one player

controls some number k of cops and the other player controls the robber. First, the cops occupy

some vertices of the graph, where more than one cop may occupy the same vertex. Then the

robber, being fully aware of the cops’ choices, chooses a vertex for himself 1. Afterwards the

cops and the robber move in alternate rounds, with cops going first. At each step any cop or

robber is allowed to move along an edge of G or remain stationary. The cops win if at some

time there is a cop at the same vertex as the robber; otherwise, i.e., if the robber can elude the

cops indefinitely, the robber wins. The minimum number of cops for which there is a winning

strategy, no matter how the robber plays, is called the cop number of G, and is denoted by c(G).

We note that if initially we place a cop on every vertex of G then the cops will win in the first

round, and hence c(G) is well-defined.

1.2. Examples.

1.2.1. The 5-cycle. Suppose G = C5 the 5-cycle. Label the vertices of G as in the picture.

Figure 1. The 5-cycle

Suppose we only use one cop, and place her on vertex 1, say. If the robber spawns in 2 or 5,

then he gets caught in the first round. If he spawns in 3 or 4 however, he can always move so

that his distance from the cop after his move is 2. Hence he can avoid the cop forever - so one

cop is not enough to catch the robber.

Two cops however are clearly enough. Just put both cops on vertex 1, and let one of them

move clockwise, the other anticlockwise. The robber will get caught in at most two rounds. So

c(C5) = 2. Similarly we conclude that c(Cn) = 2 for any n ≥ 4.

1We usually refer to the cops as female and the robber as male as in [6] - some sources do the opposite, e.g.

[9], but Prof. Bollobás said (in personal communication) that this may be sexist.
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1.2.2. The path. If G = Pn, the path of length n, then one cop can win easily. Put the cop

anywhere, and just keep moving towards the robber. Eventually the robber gets caught, so

c(Pn) = 1.

Figure 2. One cop is enough on a path

1.2.3. The complete graph. If G = Kn the complete graph on n vertices, one cop can win: we

put the cop anywhere, and catch the robber in our first move. So c(Kn) = 1.

1.2.4. The tree. Suppose G is a (finite) tree. We claim that one cop can catch the robber. We

put the cop anywhere, and at each step we move towards the robber on the unique shortest path

connecting the cop and the robber. After each move of the cop, the number of vertices to which

the robber can move without crossing the cop decreases by at least one. Hence after a finite

number of steps the robber gets cornered and caught. So c(G) = 1.

1.2.5. General graphs. Calculating the cop number of general graphs is a NP-hard problem [10].

Similarly as for the chromatic number, we run into difficulties when calculating the cop number

even for small graphs - the Petersen graph P has c(P ) = 3, but proving this already requires

some analysis.

Figure 3. A robber can always evade two cops
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Throughout the essay, we will assume that G is connected and simple, because deleting mul-

tiple edges or loops does not affect the possible moves of the players, and the cop number of a

disconnected graph equals the sum of the cop numbers for each component.

2. Lower bounds

2.1. A first idea. In this section we want to prove theorems of the form ”If G is a graph of

order n that satisfies some properties, then c(G) ≥ f(n)”. The obvious way to prove such a

theorem would be to show that for such a graph, and a small number of cops, the robber has

an escaping strategy. What does an escaping strategy look like? At each step, the robber has to

be able to move to a vertex that has no neighbours occupied by cops. We say a cop controls a

vertex v, if the cop is on v or the cop is on a neighbour of v. Hence, to show that the robber

has an escaping strategy, we must show that the robber can always move to a vertex that is not

controlled by a cop. To prove a theorem of the above form, we just need to show that less than

f(n) cops cannot control all neighbours of any vertex v. It would be nice to have a bound on

the number of neighbours controlled by a single cop.

2.2. Aigner and Fromme. How can we make sure that a single cop cannot control many

neighbours of a vertex? Suppose first that v is a vertex of G, and the cop is in a vertex c,

connected to v. Then the number of neighbours of v that are controlled by the cop equals the

number of triangles in the graph that contain both v and c, plus one. So if G contains no

triangles, then the cop controls precisely one neighbour of v (namely c).

Now suppose c is not connected to v. If the distance of v and c is at least 3, then the cop

controls no neighbours of v. Otherwise, if the distance is 2, then the number of neighbours of v

controlled by the cop equals the number of common neighbours of v and c, i.e. the number of

2-paths from c to v. Note that if G contains no 4-cycles, then there is only one such 2-path, so

the cop only controls one neighbour. In general, if the number of 4-cycles containing both c and

v is k, and the cop controls m ≥ 1 neighbours of v, then k =
(
m
2

)
.

Hence if G has girth at least 5, and v is any vertex with no cops on it, then every cop can

control at most one neighbour of v. So if the minimal degree of G is larger than the number of

cops, the robber can always move to a non-controlled vertex. This is the theorem of Aigner and

Fromme. Below we give a slightly easier proof than the one in their original paper, but the key

ideas are exactly the same.

Theorem 2.2.1 (Aigner and Fromme, 1984). [11] Let G be a graph with minimum degree δ(G)

which contains no 3- or 4-cycles. Then c(G) ≥ δ(G).

Proof. Given k cops, with k < δ(G) we show that the robber can always evade them. Suppose

the cops initially choose vertices c1, c2 . . . ck. Let v be any vertex not occupied by the cops (such

vertex exists, as |G| > δ(G) > k). As G has girth at least 5, v has a neighbour u that is not

controlled by any cop. Put the robber on u. Whatever strategy the cops use during the game,

the robber always has a neighbour that is not controlled by the cops. Hence the robber can

always move to an uncontrolled vertex, and hence can evade the cops forever. �
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Figure 4. Every cop controls one neighbour of the robber

Corollary 2.2.2. The Petersen graph P has c(P ) = 3.

Proof. Theorem 2.2.1 gives c(P ) ≥ 3. Since the diameter of P is 2, the neighbourhood of any

vertex is a dominating set. �

Corollary 2.2.3. The Hoffman-Singleton graph H has c(H) = 7. The Robertson-Wegner graph

has c(G) ≥ 5. The last Moore graph G, if it exists, has c(G) = 57.

Figure 5. The Robertson-Wegner graph, the Hoffman-Singleton graph and the

missing Moore graph

Corollary 2.2.4. Let P be a projective plane of order q. Let G be the bipartite graph formed

from P by letting one vertex set be the points of P and the other vertex set be the lines of P ,

connecting a point and a line in G if they are incident in P . Then c(G) ≥ q + 1 ≈
√
n
2 .

(In fact, it is a nice exercise to show that c(G) = q + 1 in the above.)
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2.3. Easy generalisations of Aigner and Fromme. How can we generalize the above theo-

rem? The first thing we note is that we didn’t need *all* the vertices to have large degree - it is

enough if there is a subgraph H with large minimal degree, where the robber can move so that

he evades the cops forever.

Theorem 2.3.1. Let G be a graph of girth ≥ 5, and let H ⊂ G have minimum degree δ(H).

Then c(G) ≥ δ(H).

Proof. The proof is very similar to the proof of 2.2.1. Suppose we have k < δ(H) cops, initially

placed on some vertices of G. Pick a vertex v of H not occupied by any cops. Then v has a

neighbour u in H, not controlled by any cops. Put the robber initially on u. Now the robber

announces that he will only move on the vertices of H. At every point in the game, the robber

has a neighbour in H not controlled by the cops, and hence can evade them forever. �

Given a graph G and an integer k > 0, the k-core of G is the maximal subgraph Hk with

minimum degree at least k. The degeneracy of a graph G is the largest k for which the k-core of

G exists. Equivalently, the degeneracy of G is the least k for which every subgraph of G has a

vertex of degree at most k.

Corollary 2.3.2. Let G be a graph of girth ≥ 5 and degeneracy k. Then c(G) ≥ k.

Proof. Let H be the k-core of G. The statement then follows from 2.3.1. �

What if we didn’t insist on G having girth 5, but allowed the graph to contain a few smaller

cycles? Indeed, we only needed the cops to be unable to control all the neighbours of any

vertex in some subgraph H of G. To make this idea work, given a graph G, define the function

fG : V (G) → N as follows. Given a vertex v of G, let fG(v) be the least integer k such that

one can place k cops on the vertices of G \ {v} such that the cops control all neighbours of v.

Similarly, if H is any subgraph of G, define a function fHG : V (H)→ N as follows. Given a vertex

v of H, let fHG (v) be the least k such that one can place k cops on the vertices of G \ {v} such

that the cops control all neighbours of v in H. Note that fGG ≡ fG.

Lemma 2.3.3. Let G be a graph. Then

c(G) ≥ max
H⊂G

{
min

v∈V (H)
fHG (v)

}
In particular, c(G) ≥ min{fG(v) : v ∈ V (G)}.

[Side note: observe that the right hand side of the above expression is always at most
√
n (see

[26]). Hence this lemma cannot be used to disprove Meyniel’s Conjecture (3.1.1 and 3.1.3).]

Proof. Suppose the number k of cops is less than the above expression. Then ∃H ⊂ G such that

for every v ∈ V (H), we have k < fHG (v). After the cops have chosen any initial position they

want, pick a vertex v of H not occupied by any cops. Such vertex exists, as for any v ∈ V (H)

we have fHG (v) ≤ |H|. This vertex v has a neighbour u in H that is not controlled by the cops,

put the robber on u. Now the robber announces that he will only move on the vertices of H.
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He can do this while always evading the cops, as the cops cannot control all neighbours of any

vertex in H. �

Corollary 2.3.4. Let G be a strongly regular graph with parameter set (v, k, λ, µ), that is, a

regular graph on v vertices and degree k, such that every two adjacent vertices have λ com-

mon neighbours and every two non-adjacent vertices have µ common neighbours. Then c(G) ≥
min{ k

λ+1 ,
k
µ}.

Proof. Let v be any vertex of G. If a cop is in a neighbour of v then it controls exactly λ + 1

neighbours of v. Similarly, if a cop is at distance 2 from v, then it controls µ neighbours of v. If

the cops cannot control all neighbours of a vertex, then the robber can evade forever. �

Corollary 2.3.5. The Higman-Sims graph G has c(G) ≥ 4. The Hall-Janko graph has c(G) ≥
3. �

Now we try to find lower bounds for the above functions. Given a graph G and a vertex v,

let s3(v) be the number of triangles in G containing v, and similarly let s4(v) be the number of

4-cycles in G containing v, and let s4(u, v) be the number of 4-cycles in G containing both u and

v. Suppose we have k cops available, and want to place them on vertices of G\{v} such that

together they control all neighbours of v. We will put k1 cops on neighbours of v, and k2 cops

at distance 2 from v, where k1 + k2 = k. The k1 cops on neighbours of v cover in total at most

S1 = k1 + s3(v) neighbours of v, and this bound is attained if we didn’t put two cops on vertices

c1, c2 such that together with v they form a triangle, and if all triangles containing v have a cop

on it. What can we say about the other k2 cops at distance 2, how many neighbours of v do

they cover in total?

Let these cops be on distinct vertices c1, c2, . . . , ck2 . Write g(l) for the number of neighbours

of v covered by cop l. Then
(
g(l)
2

)
= s4(v, cl), and so

g(l) =
1

2
+

√
1

4
+ 2s4(v, cl)

Note that
k2∑
i=1

s4(v, ci) ≤ s4(v)

because no two of these cops can be on the same 4-cycle with v (that would imply one of the

cops is a neighbour of v). So the total number S2 of neighbours of v covered by these k2 cops

satisfies

(1) S2 ≤
k2∑
l=1

g(l) ≤ k2

1

2
+

√
1

4
+ 2

s4(v)

k2

 =
k2
2

+

√
k22
4

+ 2k2s4(v)

So the total number of neighbours of v covered by the k cops is at most

S = S1 + S2 ≤ k1 + s3(v) +
k2
2

+

√
k22
4

+ 2k2s4(v)

As k1 + k2 = k, the maximum occurs at k2 = k, and we get
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S ≤ k

2
+ s3(v) +

√
k2

4
+ 2ks4(v) ≤ k + s3(v) +

√
2ks4(v)

We note that if a vertex has very few 4-cycles, we can improve inequality (1). Since the values

of the s4(v, ci) have to be integers, and
(
g(l)
2

)
= s4(v, cl), we get g(l) ≤ s4(v, cl) + 1, and hence

S ≤ k + s3(v) + s4(v)

Theorem 2.3.6. Let H be any subgraph of G and k > 0 be an integer. Suppose that for all

vertices v of H, at least one of the following inequalities hold:

dH(v) >
k

2
+ s3(v) +

√
k2

4
+ 2ks4(v)

dH(v) > k + s3(v) + s4(v)

where dH(v) denotes the degree of v in H. Then c(G) > k.

Proof. Both inequalities imply that for a vertex v in H, k cops cannot cover all neighbours of v

in H. So fHG (v) > k and hence we are done by 2.3.3. �

2.4. Graphs of larger girth. In the previous section we considered graphs of girth 5, and

graphs of few triangles and 4-cycles. Can we say something new if instead we insisted on the

girth being large? Can we prove a theorem of the form ”If G is a graph of order n and girth g

then c(G) ≥ f(n, g)”?

The natural thing to try is to imitate the proof of Aigner and Fromme. There we said that

since there are no 3− and 4−cycles, any cop can only cover one neighbour of a given vertex. Now

we want to say something more, given that we don’t have any 5−, 6−, . . . cycles either. To do

that we need to generalise the notion of ’covering’ - let’s call it distance covering for now. We

want to say, that ”Given a vertex v, any cop can distance cover only one neighbour of v. But

there are d neighbours, so c(G) ≥ d”.

But hang on - we proved c(G) ≥ d for girth 5 graphs already, we want something larger on

the right hand side. A natural thing to consider instead of neighbours, is a neighbourhood of

some radius r. How many vertices are there in this neighbourhood? Well, if r ≤ g−1
2 , and every

vertex has degree at least d as in the theorem of Aigner and Fromme, then there are at least

Sr = d+ d(d− 1) + · · ·+ d(d− 1)r−1 vertices at distance at most r from a given vertex.

Surely we have generalised all the concepts and now the proof should go through, right? So

let’s start the proof as in Aigner and Fromme. Suppose we have only a few cops, less than Sr, say.

Then every cop can distance cover (whatever that means) only one point in this neighbourhood.

So there is a point that is not distance covered, so the robber goes there and escapes forever...

But wait! This uncovered point might be quite far from the original vertex. So how can we make

sure there is no cop waiting on that vertex by the time the robber gets there? We need to be

very careful with the definition of distance covering!

So suppose we have a good definition for distance covering. Since the uncovered point might

be at any distance (between 1 and r) from the robber, it makes sense to think in blocks of r
8



steps. So maybe we should say ”a cop distance covers a vertex if it can get there in at most

r steps”? There are two problems with our argument now. First, if the uncovered vertex is a

neighbour of the robber, and there was a cop right next to the robber initially, then the robber

takes 1 step to the safe vertex and waits r − 1 rounds (because we think in blocks of r rounds)

and thus gets caught by the cop. A second problem is that this definition of distance covering

will definitely not imply that one cop can only distance cover one vertex at most. Fortunately,

there is an easy solution to both flaws - we got our generalisation of neighbours wrong!

What if instead of a closed ball we only considered vertices of distance exactly r from the

robber? There are Tr = d(d− 1)r−1 of those if r ≤ g−1
2 . We say a cop distance covers a vertex if

it can get there in at most r steps. Now the crucial part is to say that one cop can only distance

cover one vertex. Well, is that true? Certainly not – if a cop is inside the r-ball around the

robber then all the vertices whose shortest path to the robber go through the cop are distance

covered by him.

The way to get over this, as is the case often with proofs by induction, to prove a slightly

stronger statement. We will prove that the robber can always move to a vertex v such that all

’close’ cops are in the same direction from v – meaning there is a neighbour u of v such that all

shortest paths from these close cops to v go through u. Then we will consider blocks of ”t” steps

at once, and prove that the robber can move to another such safe vertex in t steps and not get

caught on the way. We will call a cop ’close’ to the robber if their distance is at most r.

Why is this a good thing to try to prove? Well, there are (d− 1)t vertices at distance t from

the robber in v, that are ’away’ from u, meaning the robber doesn’t have to go through u to get

there in t steps. So if the robber moves to one of these vertices x in t steps, then a close cop (in

vertex c, say) can’t get there in t steps if he is going through v so he has to find another way.

But that other way has to be longer than t - otherwise we have found a cycle of length r + 2t,

which, for appropriate choices of r and t will be way less than the girth g.

Now we have a good feeling that this argument will work, we only need to get the details

right. Suppose the robber is in v and has a neighbour u such that all shortest paths from v to

cops at distance at most r go through u. Consider now the far cops. For an appropriate choice

of r we will be able to say that a far cop distance covers at most one vertex at distance t from v.

There are at least (d − 1)t vertices to be distance covered, so if there are fewer cops than that,

then there is a safe vertex x where the robber can go in t steps. Call its predecessor y, i.e. the

last vertex the robber goes before x. If a cop was close to v then its new shortest path to x will

have to go through y, otherwise we can find a small cycle. If the cop was very far, further than

r + 2t, then it will still be a far cop when the robber is in x. If the cop was at distance between

r and r + 2t of v, and now after t steps he got close to x, then there is a path from its present

position to x through y of length at most r+4t. As long as 2r+4t < g, its new shortest path will

have to go through y as well. So we put r ≈ g/4 and t ≈ g/8. This will complete the induction.

This is the point where we realize we didn’t actually need the any of distance-covering. We

only have to say that if a cop is at distance at least g/4 from the robber, then there is at most

one vertex at distance g/8 from the robber that the cop can also reach in g/8 steps, otherwise

we would have a smaller cycle. More generally, if for any two vertices x and y we can find a

9



path connecting them of length < g/2 then we can be sure that it is the unique shortest x − y
path. Hence for the far cops we only need to consider where their shortest path to the robber

intersects the set of vertices at distance t from the robber. The details of the proof can be found

below.

Theorem 2.4.1. [7] Let t be an integer, and G be a graph of girth g ≥ 8t − 3. Suppose all

vertices in G have degree greater than d. Then c(G) ≥ dt.

Proof. In any (connected finite) graph, if some number of cops have a winning strategy from

some initial starting position then they have a winning strategy from any starting position, even

if they announce that they will not move for the first 100 rounds – after that they can move to

their winning position and catch the robber.

So wlog we may assume that initially all cops are in a vertex b, and the robber starts in vertex

a adjacent to b and it’s the robber’s turn to move. Assume we have k cops, where k < dt and

we will show that the robber can evade them forever.

Call a vertex v safe if it has a neighbour u that satisfies the following: after the cops’ move, if

a cop’s distance to v is at most 2t−2 then the shortest path (unique, as 2t−2 < g/2) connecting

the cop to v goes through u.

Initially, the pair (a, b) is safe: all cops are in b, hence their shortest paths to a clearly goes

through b. We will show that the robber can move in t steps to another safe vertex and not get

caught on the way.

Suppose now the robber is in a safe vertex v with neighbour u. Let S be the set of vertices

which are at distance t from v, whose shortest path to v doesn’t go through u. As t is much less

than g/2, there are at least dt such vertices.

We distinguish 3 types of cops. There are the close cops which are at distance at most

r = 2t− 2 from v. There are the semi-far cops which are not close, but their distance from v is

less than g/2. And there are the far cops.

Now consider the semi-far cops, i.e. the cops at distance more than r but less than g/2 from v,

and draw the shortest path from each such cop to v. Note that these shortest paths are unique,

i.e. there can not be two shortest paths from such a cop to v. Each path intersects S in exactly

one point, hence as the number of cops was less than dt there is a vertex x in S that doesn’t lie

on any of these paths. The strategy of the robber is to go straight to x, say vertex y is the one

before x. We claim that x is safe with neighbour y.

First we show that the robber didn’t get caught on the way to x. Well, he certainly didn’t get

caught by the semi-far and far cops, as 2t − 2 = r. Similarly, he didn’t get caught by the close

cops either, since the shortest path from x to a close cop must go through v, and hence there is

no shortcut from the cop to x.

Now to show that x is safe. If a cop was far initially, then he will still be at least semi-far, as

g/2−2t > r. So far cops are ok. Now consider the close cops. Suppose a cop was on c and moved

to c′ now. Then there is a path from c′ to x through c, v and y of length at most r + 2t < g/2

so this is the unique shortest path connecting c′ and x. So close cops are ok too. What about

the semi-far cops? Well, if a semi-far cop was in c but got close now, say he moved to c′, then
10



the distance of c and v must have been at most r + 2t. So we have a path from c′ to x going

through c, v, and y of length at most r+ 4t. We also have a path from c′ to x of length at most

r because the cop got close. If this second path doesn’t go through y then we could find a cycle

of length at most 2r + 4t < g. So semi-far cops are ok as well.

So we conclude x is safe and the robber can evade the cops forever. �

By being a bit more careful, one can actually get c(G) > dt above. Then the above proof for

t = 1 gives the result of Aigner and Fromme.

We note that in March 2014, Yuqing Lin has found a much simpler proof for the stronger

result where 8t− 3 is replaced by 6t− 1 in the above:

Proof idea. Show that the robber can maintain a distance of at least t from all cops throughout

the game. �

3. Upper Bounds

3.1. Main conjectures. The most well-known conjecture in this area is Meyniel’s conjecture:

Conjecture 3.1.1 (Meyniel’s conjecture). For any connected G of order n, we have c(G) =

O(
√
n).

Some examples of graphs that attain this bound are the incidence graphs of projective planes

(see 2.2.4) and the Moore graphs (see 2.2.3). This conjecture remains wide open, in fact no-one

even knows how to show the so-called soft Meyniel’s conjecture:

Conjecture 3.1.2 (Soft Meyniel’s conjecture). There exists an absolute constant c > 0 such

that for any connected G of order n, we have c(G) = O(n1−c).

We don’t even know whether c(G) = O(n0.9999)! However, there is some evidence that in fact

the following should be true (and best possible):

Conjecture 3.1.3. [26] For any connected G of order n, we have c(G) ≤
√
n.

We give three arguments from [26] that support conjecture 3.1.3:

(1) A Moore graph on n vertices has c(G) =
√
n− 1. These graphs have many extremal

properties - so perhaps they have the largest cop number as well.2

(2) The bound in 2.3.3 cannot be used to disprove 3.1.3. In fact, the supremum of the right

hand side is about
√
n. This is equivalent with saying that the teleporting cop number

is always at most
√
n.

(3) Every graph contains at least one vertex where
√
n cops can trap a robber (i.e. they

control all of his neighbours). This is not true if we replace
√
n by C

√
n for some C < 1.

2One might argue that there are only finitely many Moore graphs, hence maybe something even stronger than

3.1.3 is true for large enough n. It is true that the highest we can go with inifnite families is c(n) ≈
√

n/2 at

present [22]. However, 2.3.6 shows that if a graph is ’almost-Moore’ then it has cop number close to that of a

Moore graph - this strongly suggests the existence of an infinite family with c(n) ≈
√
n.
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The best current general upper bound is c(G) = O(n1−o(1)), which was discovered by Lu and

Peng [2] and independently by Scott and Sudakov [1]. But before looking at their proof, let’s

first enjoy some earlier proofs of weaker results.

3.2. The first non-trivial upper bound. In their paper, Aigner and Fromme proved another

easy but very useful lemma, that we shall build on.

Lemma 3.2.1 (Aigner and Fromme, 1982). [11] Let G be a graph, and u, v be any two vertices

of G. Let P be a shortest path from u to v. Then a single cop can, after finitely many moves,

prevent the robber from entering P - that is, he will get caught if he moves onto P .

Proof sketch. Let P = {u, u1, u2, . . . uk−1, uk(= v)} a shortest path between u and v. For i =

0, 1 . . . k − 1, let Di = {x ∈ V (G) : d(u, x) = i} and let Dk = {x ∈ V (G) : d(u, x) ≥ k}. For any

l, if the robber is in Dl then he can only move to Dl−1 or Dl+1. The strategy of the cop is to

pretend the robber is on P and to catch his shadow. The cop will move on P such that after a

while she will always be in the same Di as the robber. �

The reason why this lemma is so useful is that if G is a graph, and P is a large shortest path

in G, then we can put a cop on it to guard it, and hence c(G) ≤ 1 + c(G− P ).

It would be nice to show that every graph has a very long shortest path in it, as removing

it would decrease the number of vertices the robber can go to by a lot. But unfortunately that

is not always the case. For example if G has diameter 2 then every shortest path has length at

most 3, so this would give us something like c(G) ≤ n/3 - but we want a result better than that.

It would be nice to find some other exotic structure L that can be guarded by a single cop.

Then we could prove something like ”Every graph has a large shortest path or a large L”. So L
should be something that dense graphs have a lot of. The simplest answer is: vertices with large

neighbourhoods!

Now our strategy is clear: we want to prove that every graph of order n has a shortest path

of order f(n) or a vertex of degree at least f(n)− 1, for some function f . If we could prove this

then we would have c(n) ≤ 1 + c(n− f(n)), where c(n) = max{c(G) : |G| = n}, and then apply

induction.

Lemma 3.2.2. In any connected G of order n, there is a vertex of degree f(n) or a shortest

path of order f(n), where f(n) = logn
log logn

Proof sketch. Suppose there is no vertex of degree at least f(n). We want to say that the graph

has large diameter. Pick any vertex v. There are at most f(n) neighbours of v, there are at most

f(n)2 vertices at distance 2, etc. So if n > f(n) + f(n)2 + · · · + f(n)f(n)−1 then the graph has

diameter at least f(n). It remains to check an easy calculation. �

Theorem 3.2.3. [7] For any G of order n, we have c(G) ≤ O
(
n log logn

logn

)
Proof. Let S be a vertex of degree at least logn

log logn and its neighbourhood, or a shortest path of

order at least logn
log logn . Put a cop to guard S. Now the robber can only move on the vertices of
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G\S. If G\S is connected, then c(G) ≤ 1 + c(G\S). If not, then c(G) ≤ 1 + max{c(Gi)} where

the Gi are the connected components of G\S.

Let c(m) = max{c(G) : |G| = m,G is connected}. Then from the above,

c(n) ≤ 1 + c

(
n− log n

log log n

)
Now an induction gives the required result. �

A natural question to ask is, what if instead of vertices of large degree, and shortest paths,

we considered some other exotic objects? To prove Meyniel’s conjecture, we would want some

theorems of the form

• Every graph of order n has a splork or order
√
n, and

• Any splork can be guarded by 100 cops

Unfortunately, this approach is unlikely to work. The reason why shortest paths were guard-

able by one cop is that shortest paths are retracts in graphs. However, Bollobás, Kun and Leader

proved that some graphs do not have large retracts. In fact they put a poly-logarithmic upper

bound on the size of retracts in some graphs, hence this approach will not even get us to the

soft Meyniel’s conjecture, unless we manage to characterise the graphs with small retracts, and

prove Meyniel for them separately.

Here we briefly mention that Chiniforooshan improved [25] the above bound by removing the

log logn factor. He did so by introducing new objects called minimum distance caterpillars that

are always 5-guardable.

Figure 6. A minimum distance caterpillar
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3.3. An upper bound for graphs of large girth. We start by making an easy observation.

Suppose we manage to initially place the cops on vertices such that every vertex of the graph

has a cop in one of its neighbours. Clearly the cops will win, wherever the robber decides to

place herself. A dominating set of a graph G is a set D of vertices such that every vertex not in

D is adjacent to at least one member of D. The domination number of a graph G, denoted by

γ(G) is the number of vertices in a smallest dominating set for G. Hence c(G) ≤ γ(G).

Now for given k ≥ 1, consider a subset Dk of vertices of G such that for every vertex v

not in Dk, there is an element u ∈ D such that their distance is at most k. Call such a set a

k-dominating set. If Dk is such that for every vertex not in Dk there is an element in Dk at

distance precisely k then call Dk a strictly k-dominating set. Write γk(G) for the size of the

smallest strictly k-dominating set. Note that γ1(G) = γ(G). Frankl’s key observation in the

following theorem is that if the girth of the graph is sufficiently large, then by putting the cops

in Dk the robber cannot escape and hence c(G) ≤ γk(G).

Lemma 3.3.1. Given a graph G and an integer k > 0. Suppose c(G) > k. Then the robber can

evade k cops without ever stepping on a vertex of degree 1.

Proof. Given our original strategy for a robber R, our new strategy for R′ is as follows. The

new robber R′ does exactly the same as R, but whenever R would step onto a vertex of degree

1 according to the original strategy, R′ passes and stays where he was. He will continue moving

like R when they meet again, i.e. when R has left the leaf vertex. It is clear that if the cops can

catch R′ then they can catch R in at most one more round. �

Corollary 3.3.2. Let G be a graph, and let H be its 2-core, i.e. H is obtained from G by

repeatedly removing vertices of degree 1 from G. Then if the robber can evade k cops, he can do

so without ever leaving H.

Theorem 3.3.3. [7] Suppose that the girth of G is at least 4h− 1. Then c(G) ≤ γh(G).

Proof. Let D be a strictly h-dominating set of size γh(G), and place the cops on the vertices

of D initially. Suppose the robber decides to start on vertex x. Let S be the set of vertices at

distance precisely h− 1 from x. For each y ∈ S write c(y) for a cop at distance precisely h from

y. We note that if y, y′ ∈ S then c(y) = c(y′) is possible. The strategy of the cops is to move

in a straight line towards x (as the girth is at least 4h − 1 and their distance to x is at most

2h− 1 there is a unique shortest path from each c(y) to x) and stop as soon as they are on the

shortest path connecting x and the robber. Our claim is that the robber is caught in at most

2h − 1 steps, i.e. after all the cops have stopped. Wlog the robber doesn’t leave the 2−core of

G.

Suppose after 2h − 1 steps the robber is in z. If d(x, z) ≥ h − 1 then the shortest path

connecting z to x meets S in some vertex y. If d(x, z) < h − 1 then as x, z are in the 2-core of

G there is a y ∈ S such that the shortest path connecting y to x goes through z. So we can pick

a y ∈ S such that either y lies on the shortest path between x and z, or z lies on the shortest

path between x and y. We claim c(y) caught the robber in the first 2h− 1 steps. Let the initial

position of c(y) be a.
14



Suppose after 2h− 1 steps c(y) is in vertex u and didn’t catch the robber on the way. If z is

on the shortest path between u and x then c(y) stopped at some point prior to reaching x. So

at some point u was on the shortest path between the robber and x. But then there was no way

for the robber to get between u and x without crossing the cop standing on u, as the girth is

4h− 1. So z is not on the shortest path between u and x.

The cop stopped in u either because u = x or because u lied on the shortest path between the

robber and x. In either case, since the girth is at least 4h−1, the robber must have gone through

u at some point in the first 2h − 1 steps – and since he didn’t get caught, he went through u

before c(y) got there.

Let P1 be the (unique) shortest path between y and x, and P2 the one between the initial

position of c(y), i.e. vertex a, and x. Let v be the first vertex where these two paths meet, i.e.

the vertex in their intersection that is the furthest away from x.Then the shortest path between

a and y must go through v – otherwise we would have a cycle of length at most h+ h+ (h− 1).

Then h = d(a, y) = d(y, v)+d(v, a) and h−1 = d(y, x) = d(y, v)+d(v, x). So d(v, x)+1 = d(v, a).

So the distance of the robber and the vertex v was just one less than the distance of the cop

and v. Since the cop goes first, if both run straight to v then the robber gets caught. So the

vertex u, i.e. where the cop stopped cannot be between v and a, so u lies on the shortest path

connecting v and x.

Now c(y) stopped in u because it was on the path between x and the robber. Where was the

robber at this point, i.e. when the cop arrived at u? He wasn’t on the path between x and y

because then he got caught already. If z lies on the path x − y then the robber can’t get to z

without going through u. Similarly, is y lies on the path x − z then the shortest path from the

robber’s current position to z goes through u because of the girth constraint, so the robber can’t

get to z. These were the only two possibilities due to our choice of y, and hence we are done.

�

Recall that a hypergraph H is a set V of vertices together with a set E of edges, where each

edge is an arbitrary subset of V . The degree of a vertex x is the number of edges that contain

x. A vertex cover for H is a subset V that meet all edges in E. We write τ(H) for the size

of the smallest vertex cover. A natural generalisation of a vertex cover is the fractional vertex

cover τ?(H) to be the min {Σv∈V f(v) | f : V → R+, ∀e ∈ E(H) : Σv∈ef(v) ≥ 1}. So instead of

picking specific vertices, we assign positive weights to some vertices such that the sum of weights

in each edge is at least 1.

Theorem 3.3.4 (Lovász (1975), Stein). If H is a hypergraph of maximum degree d, then τ(G) ≤
(1 + log d)τ?(G).

Proof idea. Use the greedy algorithm. At each step pick a vertex that covers the most number

of new edges. �

Given a graph G, write Nh(x) for the set of vertices at distance precisely h from x. Let

nh(G) = min{|Nh(x)| : x ∈ V (G)} and mh(G) = max{|Nh(x)| : x ∈ V (G)}

Corollary 3.3.5. [7] If G is a graph of girth at least 4h− 1 then c(G) ≤ (n/nh)(1 + logmh).
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Proof. Let H be a hypergraph on vertex set V (G) with edge set {Nh(v) : v ∈ V (G)}. By

assigning weight 1/nh to each vertex, we get a fractional vertex cover, hence τ?(H) ≤ n/nh. By

theorem 3.3.4, we get γh(G) = τ(H) ≤ (n/nh)(1 + logmh). The result follows from theorem

3.3.3. �

3.4. A general upper bound. The best known upper bound is due Lu and Peng [2]. Shortly

after, Sudakov and Scott found [1] a similar but shorter proof of the same result, independently

from Lu and Peng. Later Frieze, Krivelevich and Loh [13] gave a reformulation of the proof of

Sudakov and Scott, using expanders. Here we present only the proof of Sudakov and Scott.

Theorem 3.4.1. If G is any graph of order n then c(G) ≤ n · 2−(1+o(1))
√
logn

The main structure of the proof is as follows: if the graph has large diameter then we can find

a large shortest path, put a cop on it and delete it. Otherwise, if the graph has small diameter,

we will proceed with a random argument.

We will choose some subsets C1, C2, . . . Ct of vertices uniformly at random with some proba-

bility p for some t, and put a cop on each element in them (if a vertex is present in more sets

then we put more cops on it). We will choose p small enough so that the sum of the sizes of the

sets isn’t too large, but large enough so that our proposed strategy for the cops will work. These

sets will be our squads of cops.

The robber chooses some vertex v for herself. Now our strategy is as follows. We will define

some subsets A1, A2, . . . At of vertices that have rather few neighbours. The task of squad 1

is to make sure that after 1 round, the robber has to go to A1, i.e. the cops in squad 1 will

occupy all other neighbours of v. Having done so, squad 1 has accomplished its task and they

will stay where they are forever. Meanwhile, squad 2 makes sure that after 2 rounds, the robber

is cornered into a vertex of A2. Similarly, the task of squad k is to make sure that after 2k−1

rounds, the robber can only be in Ak−1. We finish the proof by proving that one of the Ai-s has

to be empty, and hence the robber gets caught.

How should we choose the Ai-s? We will define them inductively. Having defined Ai, we

consider the closed ball B(Ai, 2
i−1), and pick a subset of this ball that has rather few vertices at

distance ≤ 2i−1 and call this Ai+1. The remaining vertices in this ball have a rather high degree,

so we will use Hall’s theorem to find a matching from elements of squad i to these vertices.

The difficulty of this proof lies in the details. Even after knowing the main ideas of the proof,

filling in the details and making all the estimates work is not easy. The complete proof, a very

technical one indeed, is presented below.

We start by dealing with the low diameter case (the hard part!). First, a technical lemma.

Lemma 3.4.2 (Chernoff bound). Suppose p ∈ [0, 1], and let X1, . . . Xn be mutually independent

with P (Xi = 1− p) = p and P (Xi = −p) = 1− p. Let X = X1 + · · ·+Xn. Then for any a > 0,

we have

P (X > a) < e−2a
2/n

Proof. See theorem A.1.4 in [12]. �

Now we turn onto the main proof of the low diameter case.
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Lemma 3.4.3. Let G be a graph of order n ≥ 230 and diameter D ≤ 2
√
logn/ log3 n. Then

c(G) ≤ n(log3 n)2−
√
logn

Proof. Set t =
√

log n− 3 log log n. Note that 2t = 2
√
logn/ log3 n ≥ D. Let p = (log2 n)2−

√
logn.

For each i in {1, 2, . . . t+1}, choose a subset Ci of vertices uniformly at random with probability p,

i.e. for each vertex v and each i, the vertex v has probability p of being in Ci, independently of the

other Cj-s. Then the |Ci|-s are binomially distributed with expectation µ = n(log2 n)2−
√
logn.

By lemma 3.4.2, the probability that |Ci| > 2µ is at most e−2µ
2/n < e−µ/3 < n−2. The

probability that none of the Ci-s has more than 2µ vertices is at least (1 − n−2)t > 1 − t/n2 >
1− log n/n2 > 0.9. So with probability at least 0.9, the sum of the sizes of these sets is at most

2µt < n(log3n)2−
√
− logn. This will give us our final bound.

To proceed with the proof we need a simple claim. For a subset A of the vertices of G and

an integer i, write B(A, i) for the closed ball of radius i around A, i.e. all vertices which can be

reached from some vertex in A by a path of length at most i.

Claim: The following statement holds with probability at least 0.9: for every set A ⊂ V (G)

of size at most n2−
√
logn, every i ≤ t such that |B(A, 2i)| ≥ 2

√
logn|A|, and every j, we have

|B(A, 2i) ∩ Cj | ≥ |A|

Proof of claim: Let |A| = a. Fix A, i, j, and try to estimate the number X of points from Cj

in B(A, 2i). This value is binomially distributed with expectation µ = p|B(A, 2i)| ≥ a log2 n.

What is the probability that it is less than a? By the Chernoff bound,

P (X < a) < e−
(a−µ)2

2µ = ea−
a2+µ2

2µ ≤ ea−
a2

2µ−a log2 n/2 ≤ ea(1−log
2 n/2) ≤ e−a(log

2 n)/3

The number of sets of size a is
(
n
a

)
, the number of possible choices for i, j is at most t2 ≤ log n,

and

log n
∑(

n

a

)
e−a log2 n/3 ≤ log n

∑ na

aa
ea(1−log

2 n/3) ≤ log n
∑

ea(1+logn−log2 n/3) ≤

≤ n log n e2 logn−log2 n/3 ≤ 10n4e− log2 n/3 ≤ 100n4−logn/3 ≤ 0.1

This proves our claim. �

By our claim, and the result just before that, we can pick our Ci to satisfy the assertion of

the claim and such that the sum of their sizes is at most n(log3n)2−
√
− logn. Now for each vertex

u put a cop on u for each Ci containing it. Thus we have placed at most n(log3n)2−
√
− logn on

the graph. Remains to show that these cops can catch the robber.

Suppose the robber starts in vertex v. Note first, that d(v) ≤ 2
√
logn - otherwise, by our claim

with A = {v}, there is a cop in his neighbourhood and he loses in the first round.

Now let A1 be the largest subset of B(v, 1) such that |B(A1, 1)| < 2
√
logn|A1|, and let D1 =

B(v, 1) − A1. This ensures that if M ⊂ B(v, 1)\A1 then |B(M, 1)| is large. Indeed, if we had

some M ⊂ D1 with |B(M, 1)| < 2
√
logn|M | then we can add M to A1 to find a larger set,
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contradicting the maximality of A1. By our claim, B(D1, 1) contains at least |D1| members of

C1.

We want the cops in C1, i.e. Squad 1, to occupy the set D1 in their first round. For this to be

possible, we need to find a matching from cops in squad 1 to vertices in D1 such that each cop

is adjacent to his assigned vertex. To do this, we want to use Hall’s theorem to find a complete

matching. But above we showed that for every M ⊂ D1, we have |B(M, 1)| ≥ 2
√
logn|M | and

hence by our claim |B(M, 1)∩C1| ≥ |M |. So by Hall’s theorem we have a perfect matching, and

hence Squad 1 can occupy D1 in their first round.

Now we proceed to define the strategies of the other squads inductively, in a similar way as

we did for the first one. Suppose we have defined the strategies for the first i squads, and we

have sets Ai, Di. We want to define Ai+1, Di+1 such that Squad i + 1 can occupy Di+1 in 2i

steps. Consider the ball B(Ai, 2
i−1), and let Ai+1 be the largest subset of this ball such that

|B(Ai+1, 2
i)| < 2

√
logn|Ai+1|. Let Di+1 = B(Ai, 2

i−1)\Ai+1. To prove that the cops can occupy

Di+1, use Hall’s theorem as above. For every M ⊂ Di+1, we have |B(M, 2i)| ≥ 2
√
logn|M | and

hence by our claim, |B(M, 2i) ∩ Ci+1| ≥ |M |. So by Hall’s theorem we have a matching from

Ci+1 to Di+1 and hence Squad i+ 1 can occupy Di+1 in at most 2i rounds.

We have shown that we can move the cops in such a way that for each i with 1 ≤ i ≤ t,

Squad i occupies the set Di after at most 2i−1 rounds. How can the robber evade the cops?

After his first round, he must be in B(v, 1) – but the set D1 ⊂ B(v, 1) is already occupied by

Squad 1. So after his first round he must be in B(v, 1)\A1 = D1. By induction, suppose after

2i−1 rounds he is in Ai. After 2i−1 more rounds, he is somewhere in B(Ai, 2
i−1). But by then,

2i rounds have passed in total, so Squad i+ 1 has occupied the set Di+1. So the robber has to

be in B(Ai+1)\Di+1 = Ai+1. Hence if the robber manages to evade the cops, then by doing so

he has visited each of the Ai-s at least once.

We claim that this is impossible. Indeed, since the diameter of G is small, we must have that

At + 1 is empty and hence the robber could not have possibly visited that set. Note that we

chose the Ai-s to have small neighbourhoods. In particular, we have

|Ai+1| ≤ |B(Ai, 2
i−1)| ≤ 2

√
logn|Ai|

Hence, taking A0 = {v}, we get

|At+1| ≤
(

2
√
logn

)t+1

= 2logn−3 log logn
√
logn+

√
logn ≤ n2−2

√
logn

But we also have that

|B(At+1, 2
t)| ≤ 2

√
logn|At+1| ≤ n2−

√
logn < n

Since 2t ≥ D as remarked in the very first line of this proof, this is a contradiction. Hence At+1

must be empty and hence the robber gets caught in at most 2t steps. �

It remains to put all the pieces together to make the final induction work.

Proof of Theorem 3.4.1: Let G be a graph on n vertices. We shall prove by induction that

c(G) ≤ f(n) = 2n (log n)
3

2−
√
logn
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Note that this trivially holds if 2 (log n)
3

2−
√
logn ≥ 1, i.e. if log n < 930, so we may assume

log n ≥ 930. If G has diameter at most 2
√
logn/ log3 n then we are done by Lemma 3.4.3.

Otherwise, we have a shortest path P of order at least D = 2
√
logn/ log3 n. Put a cop on P to

guard this path. Hence we have c(G) ≤ 1 + c(G− P ). By induction,

c(G− P ) ≤ f(n−D) ≤ 2(n−D) (log n)
3

2−
√
logn−D ≤ 2n (log n)

3
2−
√
logn−D − 2

Since log n ≥ 930, we have D ≤ 2−900n. So√
log n−D ≥

√
log n− 2D/n ≥

√
log n− 2D/(n log n)

For x ∈ (0, 1) we have 1 + x ≥ 2x, and hence 22D/(n logn) ≤ 1 + 2D/(n log n). Substituting

back, we get

c(G− P ) ≤ 2n(log n)32−
√
logn

(
1 +

2D

n log n

)
− 2 = f(n) +

4√
log n

− 2 ≤ f(n)− 1

So c(G) ≤ 1 + c(G− P ) ≤ 1 + f(n)− 1 = f(n) and hence we are done.

�

4. Random Graphs

We want to investigate the behaviour of the cop number in random graphs G(n, p) where

p = p(n) may depend on n. We shall prove that for constant p we only need C log n many cops,

and that G(n, p) cannot be used to find a counterexample for Meyniel’s conjecture.

4.1. Constant p. Consider G(n, p) where p is a constant that does not depend on n. We will

show that Meyniel’s conjecture holds in this case (and in fact C log n cops are enough).

First note that if γ(G) is the domination number of G, then c(G) ≤ γ(G). Dreyer proved [14]

the following theorem in his doctoral thesis:

Theorem 4.1.1. Let p ∈ (0, 1) be fixed, and define

Ln = log 1
1−p

n

Then for every real ε > 0, a.a.s.

(1− ε)Ln ≤ γ(G(n, p)) ≤ (1 + ε)Ln

Shortly after, Wieland and Godbole determined [15] the domination number of random graphs

where p = p(n) is a function of n:

Theorem 4.1.2. A.a.s. γ(G(n, p)) equals one of two values:

bLn− (L) ((Ln)(log n) + 1)c

or

bLn− (L) ((Ln)(log n) + 2)c

Later Bonato, Hahn and Wang gave a proof of the following theorem in [16]:
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Theorem 4.1.3. Let p ∈ (0, 1) be fixed, and ε > 0. Then a.a.s.

(1− ε)Ln ≤ c(G(n, p)) ≤ (1 + ε)Ln

In particular,

c(G(n, p)) = Θ(log n)

Proof idea. The upper bound follows from 4.1.1. We only need to establish the lower bound. We

shall use the ideas from Aigner and Fromme’s theorem in section 2 – if k cops cannot be placed

to cover all neighbours of any vertex, then the robber can always escape forever. By theorem

2.3.3, we only need to prove that a.a.s. fG(v) > b(1− ε)Lnc for all vertices v of G(n, p). �

4.2. Variable p. For dense random graphs, Bonato, Pralat and Wang proved [17] the following:

Theorem 4.2.1. If d = np = nα+o(1), where 1/2 < α ≤ 1, then a.a.s.

c(G(n, p)) = Θ(log n/p) = n1−α+o(1)

To get a better understanding of the behaviour of c(G(n, p)), we define a function f : (0, 1)→ R
by

f(x) =
log c̄(G(n, nx−1))

log n

Where c̄(G(n, nx−1)) is the median cop number of G(n, p). Then the following straight line

depicts the conclusion of 4.2.1:

Figure 7. The graph of f, so far
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Bollobás, Kun and Leader considered sparse random graphs and proved the following bounds

[18] in 2008:

Theorem 4.2.2. If p(n) ≥ 2.1 log n/n, then a.a.s.

1

(np)2
n

1
2

log log (np)−9
log log (np) ≤ c(G(n, p)) ≤ 160000

√
n log n

Hence they proved Meyniel’s conjecture for random graphs, up to a logarithmic factor of n.

The following figure shows what we know so far:

Figure 8. The graph of f, so far

The dashed lines denotes the lower and upper bounds.

The above two results show that if np = no(1) or np = n1/2+o(1) then a.a.s. c(G(n, p)) =

n1/2+o(1), hence it would be natural to assume that in between, i.e. for 0 < α < 1/2, we have

that c(G(n, p)) is close to
√
n. It turns out that the actual behaviour of our function f is more

complicated.

4.3. The Zigzag Theorem. Luczak and Pralat showed [19] that the behaviour of the function

f follows a zig-zag shape. Their main theorem is as follows:

Theorem 4.3.1. Let 0 < α < 1 and d = d(n) = np = nα+o(1).

(i) If 1
2j+1 < α < 1

2j for some j ≥ 1, then a.a.s.

c(G(n, p)) = Θ(dj)
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(ii) If 1
2j < α < 1

2j−1 for some j ≥ 1, then a.a.s.

Ω
( n
dj

)
= c(G(n, p)) = O(

n

dj
log n)

Note that 4.3.1 implies the following about the function f :

f(x) =

αj, if 1
2j+1 < α < 1

2j for some j ≥ 1,

1− αj, if 1
2j < α < 1

2j−1 for some j ≥ 1

The case α = 1/k is not covered in their paper for technical reasons. They write: “Nonetheless,

one can expect that, up to a factor of logO(1) n, our result extends naturally to the case np =

n1/k+o(1) as well”. The following picture shows the graph of the function f (picture taken from

[19])

Figure 9. The zigzag shape of the function f

The proof of 4.3.1 has two parts. The lower bound has a very clever idea in it, but is rather

technical. We start by establishing the upper bound, that has a straightforward proof, but is

still a bit technical.

The idea for the upper bound is as follows. Place the cops on vertices at random. Then, if

the robber is at v, say, the cops will occupy all vertices at distance exactly j from v, and they

will do so in at most j + 1 rounds. That means that the robber is surrounded in Nj(v) – then

the cops will tighten the circle around him until he gets caught.

We start with a lower bound on the sizes of neighbourhoods in G(n, p):
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Lemma 4.3.2. Let 0 < α < 1, and d = np = nα+o(1). Then a.a.s. for any 1 ≤ i ≤ 1/(2α) and

vertices v1, . . . vk of G(n, p), we have∣∣∣∣∣∣
k⋃
j=1

Ni+1(vj)

∣∣∣∣∣∣ ≥ 0.5 min{k(0.1d)i+1, n}

Proof sketch. Pick k vertices and generate their (i + 1)-neighbourhoods one after the other,

always disregarding vertices we have already discovered. We may assume we haven’t discovered

n/2 vertices yet. Then by the Chernoff bound (3.4.2), the probability that a vertex gives us less

that (0.1d)i+1 new vertices is less than n−4. Thus the probability that at least half of the k

vertices have less than (0.1d)i+1 vertices in their (i+ 1)-neighbourhood is O(n−1). �

Proof of the upper bound. (i) Assume n1/(2j+1) ≤ d ≤ n1/(2j) and let γ = dn log n/d2j+1e. We

will prove that a.a.s. c(G(n, p)) = O(djγ) which is easy to see to imply our upper bound. We

begin with placing βn = 5000(10d)j cops on the vertices of the graph at random, and show that

these cops can catch the robber. Say the robber chooses v.

We want to assign to each vertex u at distance exactly j from v a unique cop in at distance

at most j+ 1 from u. To prove this, we will use Hall’s marriage theorem. Consider the bipartite

graph, where one vertex set consists of all vertices at distance exactly j from v, and the other

vertex set being the vertices occupied by the cops (appearing with the corresponding multiplicity).

A vertex and a cop are joined by an edge if their distance is at most j + 1. We want to show

that there is a matching saturating the first vertex set.

Fix a subset S of the vertices at distance precisely j from v, i.e. S ⊂ Nj(v)\Nj−1(v), say

of size |S| = k. We want to estimate the number of cops in the (j + 1)-neighbourhood of S.

By Lemma 4.3.2, the area of this neighbourhood is at least 0.5 min{k(0.1d)j+1, n}. Let k0 be

the largest k such that k(0.1d)j+1 ≤ n. Hence if k ≤ k0, we conclude the lower bound on the

neighbourhood of S:

|Nj+1(S)| ≥ k(0.1d)j+1

Since we placed the cops uniformly at random, the expected number X of cops in this neigh-

bourhood satisfies E(X) ≥ kβ(0.1d)j+1 ≥ 50k log n.

Recall that we want to show that there are at least k cops in this neighbourhood. The

Chernoff bound comes to our help again: The number of cops in this neighbourhood is binomially

distributed, hence the probability that there are less than k cops in this neighbourhood is at most

exp (−4k log n). The sum of these probabilities over all S of size at most k0 is

(2)

k0∑
k=1

(
|Nj(v)|
k

)
exp(−4k log n) ≤

n∑
k=1

nk exp(−4k log n) =

n∑
k=1

n−3k = O(n−2)

So a.a.s. the condition in Hall’s theorem holds for all subsets of size at most k0. What about

the subsets of size greater than k0? We can just do the same thing as before. By the Chernoff

bound, |Nj(v)| ≤ 2dj holds a.a.s., hence if k0 < k then the number of cops in Nj+1(S) is at least

βn/4 ≥ 50dj > |Nj(v)| by Chernoff, with probability at least 1− exp (−4dj). As before, the sum
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of these probabilities over all S of size at least k0 is

(3)

n∑
k=k0+1

(
|Nj(v)|
k

)
exp(−4dj) ≤ 2dj22d

j

exp(−4dj) = O(n−2)

So Hall’s criterion holds a.a.s., and hence the cops can occupy all vertices at distance precisely

j from v before the robber can escape Nj(v).

What now? The cops have trapped the robber in Nj(v), now they have to catch him. The

cops’ strategy is now to tighten the loop in each step - that is, in the next round they will occupy

all vertices at distance precisely j − 1 from v, then all vertices at distance precisely j − 2, and

so on until the robber gets caught. To do this, we need to find a matching from Ni+1(v)\Ni(v)

onto Ni(v)\Ni−1(v), for each i < j. It is an easy exercise to show that this matching exists a.a.s.

for all i < j, hence the cops can tighten the loop around the robber and win the game.

(ii) Assume now that n1/(2j+2) ≤ d ≤ n1/(2j+1). We can do exactly the same as above to

show that βn = 5000n log n/(0.1d)j+1 cops are enough. �

What is the difference between the cases (i) and (ii) above? In the strategy we gave for the

cops, only the cops at distance at most 2j + 1 from v are active. In (i), this means almost all

cops, while in (ii) this means only a fraction of the cops. This little odd/even argument seems

completely unimportant at first sight, but this is in fact what gives the plot this nice zigzag

shape. So it seems that this immediate greedy pursuit strategy we gave for the cops is in some

sense the best possible, and this parity problem is not possible to overcome with some cleverer

cop strategy.

Now let’s turn to proving the lower bound. We will assume that the number of cops is less

than the given value, and prove that the robber may escape forever. The key idea is as follows:

suppose the robber is in some vertex v. We will give a score to all his neighbours, depending

on how dangerous it is to go to that neighbour. A 0-dangerous vertex will be the worst of all -

they have a cop on them. A 1-dangerous vertex doesn’t have a cop, but has a cop in one of its

neighbours. A k-dangerous vertex has ck cops in its k-neighbourhood, for some suitably chosen

c. A vertex that is not dangerous for any k will be called safe. We want to show that the robber

can always move to a safe vertex, and hence win the game. A slight technical problem with the

above is, that we might deal with stupid cops who all start from the same vertex, and always

just move towards the robber. This way they will never catch him, but our argument would fail

since all neighbours of the robber get (essentially) the same dangerousness score. To fix this, we

will temporarily delete the most dangerous neighbour from the graph when assigning the scores.

We will see how this overcomes this problem.

Note that this idea of ’always moving to a safe vertex’ is essentially the same as with Frankl’s

proof about the cop number of graphs of large girth. Only the definition of ’safe’ has changed,

because the setting is different now. Hence the following seems like a really efficient general

strategy for proving strong lower bounds on the cop number:
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Strategy 4.3.3 (Strategy for proving a lower bound on the cop number of some fixed graph G).

(1) Define the notion of a safe vertex

(2) Assume we have less cops than the lower bound that we wish to prove, and show that

there exists an initial configuration where the robber is on a safe vertex.

(3) Prove that the robber can always move along safe vertices, starting from the above initial

configuration

We will demonstrate the effectiveness of the above recipe by proving the lower bounds for the

Zigzag Theorem:

Proof of the lower bound. Assume first that 1
2j+1 < α < 1

2j , and let c = c(j, α) = 3
1−2jα . We

will show that a.a.s.

c(G(n, p)) ≥
(
d

3cj

)j
and the lower bound will follow.

For vertices u, v, w, write Cui (w) (or Cu,vi (w)) for the number of cops at distance at most i

from w in G\{u} (or G\{u, v}, respectively). Hence if u 6= v then Cu0 (v) = 1 iff there is a cop on

v, and Cu,v1 (w) > 0 iff there is a cop on w, or in a neighbour of w, that is not u or v.

Suppose it is the robber’s move. We call a vertex v safe if it is not occupied by a cop, and it

has a neighbour x such that Cx2i−1(v), Cx2i(v) ≤
(

d
3cj

)i
for all i = 1, 2, . . . , j. We call x a deadly

neighbour of v.

Assume that we have less than
(

d
3cj

)j
cops. If the cops can catch the robber then they can do

so from any initial starting position. Pick a vertex w and put all the cops there. Since α < 1
2j ,

a.a.s. there is a vertex v at distance more than 2j from w. Put the robber on v. Then even

after the cops’ first move, the vertex v will be safe. Hence it remains to show that whenever the

robber is on a safe vertex then he can always move to a vertex that will be safe after the cops’

move.

Suppose the robber is on v, with deadly neighbour x. We will assign a score to all neighbours

of v. We say that for some r ≥ 0 a neighbour y of v is r-dangerous if

(1) Cx,vr (y) > 0 is r = 0, 1;

(2) Cx,vr (y) >
(

d
3cj

)i
if r = 2i or r = 2i+ 1.

How many r-dangerous neighbours does v have? Let’s start with r = 0: the number of 0-

dangerous neighbours of v is the number of neighbours of v occupied by cops. But since v was

safe, Cx1 (v) ≤ d
3cj so the number of 0-dangerous neighbours of v is at most d

3cj . Write dang(r) for

the number of r-dangerous neighbours of v, not counting x. Hence dang(0) ≤ d
3cj , and similarly

we can show dang(1) ≤ d
3cj . What about larger values of r?

Note that a.a.s. for any two vertices a, b, if b ∈ Ni(a) for some i with 2 ≤ i < 1/α, then a and

b are joined by fewer than 2/(1− iα) paths of length i. (This follows from Markov’s inequality.)

Hence if in our case w is at distance r from v, then there are less than c neighbours of v which

are at distance r − 1 from w. We will now compute Cxr (v) in two different ways. Assume first

that r = 2i.
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On the one hand, v has dang(r − 1) neighbours which are (r − 1)-dangerous, and each such

neighbour has at least
(

d
3cj

)i−1
cops at distance at most r − 1. Each cop was counted at most

c times, hence (
d

3cj

)i−1
dang(2i− 1) ≤ c · Cx2i(v)

On the other hand we know that v is safe, so

Cx2i(v) ≤
(
d

3cj

)i
and hence

dang(2i− 1) ≤ d

3j
.

Similarly we can show that if r = 2i + 1 we get dang(2i) ≤ d
3j . Hence we get that for all

r = 0, 1, . . . 2j − 1, we have dang(r) ≤ d
3j .

Hence at most 2d/3 neighbours of v are r-dangerous for some 0 ≤ r ≤ 2j − 1. So there are

about d/3 neighbours which seem safe - does it matter which one the robber goes to? Indeed, it

does! It could be that x is overflowing with thousands of cops. If the robber moves to a vertex y

which is close to x in G\{v} then there is no chance for y to be a safe vertex in the next round!

So we want - in fact, need - to prove for our approach to work, that v has a non-dangerous

neighbour y which is at distance at least 2j from x in G\{v}. If we can move to such a y then

we would be done. Indeed, the fact that y is non-dangerous and far from x implies that y, with

v being its deadly neighbour, is a safe vertex after the cops’ move.

To prove that such a y exists, we will show that if i < 1/α then a.a.s. each edge of G(n, p) is

contained in at most εd cycles of length at most i+ 2. Applying this claim to the edge x− v will

imply the existence of such a y.

Let’s start by picking two vertices r1, r2 that are connected by an edge, and let’s try to count

how many (r1, r2)-paths there are in the graph of fixed length l, for some 2 ≤ l ≤ i+ 1. Denote

the number of such paths by Xr1,r2
j (p). If we can show that the number of such paths is a.a.s.

at most εd/(2i) for all l ≤ i+ 1 then we are good. We can easily write down the expectation of

this random variable:

E
(
Xr1,r2
j (p)

)
=

(
n− 2

j − 1

)
(j − 1)!pj < (np)j/n ≤ d

(
di/n

)
<
εd

4i

We want to bound the probability that Xr1,r2
j > εd

2i above. One possible way to do this is by

using Vu’s inequality ([20], Cor. 2.6.). We first choose a p′ > p such that we have an equality

above, that is E
(
Xr1,r2
j (p′)

)
= εd

4i and then Vu’s inequality gives

P
(
Xr1,r2
j (p′) > εd/(2i)

)
≤ P

(
Xr1,r2
j (p′) > 2EXr1,r2

j (p′)
)
≤ exp

(
−a(EXr1,r2

j (p′))1/(j+1)
)

Since εd
4i ≥ log2(j+1) n, we get

P
(
Xr1,r2
j (p) > εd/(2i)

)
≤ exp(−a log2 n) = o(n−2)

Hence a.a.s. such a y exists and our proof of the Zigzag Theorem is complete.

�
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5. Cops and Fast Robber

A natural generalisation of the usual game of Cops and Robbers is where we allow the robber

to move more than one edge in his round. This variant was first considered in [21]. The natural

question is: what is the corresponding Meyniel’s conjecture for this game? There is no chance

of proving the best possible bound (since we can’t even prove the original Meyniel’s conjecture),

but it is worth trying to find constructions of graphs of high cop number for this game. In this

section we will present the best known constructions, due to Alon and Mehrabian [9].

5.1. Finding the correct bound. Assume the robber has speed s, so that he can move s

edges in his round. Should we allow the robber to pass through cops while moving, as long as

he finishes on an empty vertex? It turns out that if we do allow this, then the cop number can

be as large as Ω(n) (see [23]). So let’s assume the robber is not allowed to move through cops in

his round.

Our strategy is clear. Find some family of graphs Gn, and prove that they have large cop

number. To prove that a graph has a high cop number we can use our usual strategy that seems

to always work well - see Strategy 4.3.3. Our best bet for the Gn-s are some type of combinatorial

designs - they often have very high cop number, and often this isn’t completely impossible to

prove. So how should we begin our proof?

We suggest two ways of finding the correct bound. The first, probably more natural way, is

to open a big book of combinatorial designs, try to find a family that seems to have large cop

number, then prove that they indeed do have large cop number, and hope that we found the

asymptotically best possible lower bound. This worked well for the usual Cops and Robbers,

where the incidence graph of projective planes was an easy design to find and analyze.

However for this game this is unlikely to work, because it is much harder to smell out the

optimal designs. We are much better off by doing the proof first, and then find a graph for which

our proof applies! This might seem like an absurd idea at first, but we will see that this works,

while sniffing out the correct construction without any clues is equivalent to winning the lottery.

So let’s jump straight into the proof. Our best bet is to follow the steps in Strategy 4.3.3.

In this case, the main idea is in the definition of a safe vertex. Once we guessed the correct

definition, writing out the rest of the meta-proof (since we don’t really know what we are trying

to prove) is routine. Once we finish our meta-proof, it is easy to transform it into a proof of a

statement like ’If a graph has these properties then c(G) is at least something’ - and once we got

that we just have to pray that there exists a graph with those properties and that we can find it.

Theorem 5.1.1 (Meta-theorem). Let G be a graph satisfying certain properties. Then the

number of cops required to catch a robber of speed s is at least C. The properties and the bound

will be specified during the proof - we’ll see what we need.

Proof. The notation we use is similar to the one in the proof of the Zigzag Theorem. We write

Nk(u) for the set of vertices at distance precisely k from vertex u. If k = 1 we sometimes just

write N(u). As usual, we say a cop controls a vertex if the cop is on the vertex or in a neighbour.
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A cop controls a path if the cop controls a vertex of the path. The cops control a path if there

is a cop controlling the path.

Now comes the important definition: a vertex r is safe if there is a subset X ⊂ Ns(r) of size

M such that for all x ∈ X, all shortest r−x-paths are uncontrolled. Here M is a suitable number

that we will choose later for our proof to work.

Suppose we have less than C cops. We need to show that there is a safe starting position

for our robber. Wlog we will put all cops on the same vertex, really far away from the robber

so they don’t interfere with our game. Note that even if the graph has diameter 2, we can just

attach a long path to it and put the cops on its end vertex - this would probably not change

our bounds asymptotically, hence we need not worry about the cops for now. So a safe starting

position exists as long as there is a vertex v with |Ns(v)| ≥M .

So remains to show that the robber can move from a safe vertex to a safe vertex. Suppose the

robber is in r, and (since r is safe) there is a set X ⊂ Ns(r) of size M such that for all x ∈ X all

shortest r − x-paths are uncontrolled. Let A be the set of vertices which lie on a shortest path

between r and some x ∈ X. Now the cops move to new positions. Since r was safe, there is no

cop in A right now (since the cops didn’t control any vertex in A before their move). Now the

robber has to decide where to go. Since there is no cop in A, the robber can move to any vertex

in X. So all we need to show is that there is a safe vertex in X.

How can we find a safe vertex in X? First of all, a safe vertex is not controlled by a cop. So we

need to be able to show that the cops don’t control all vertices in X. We can bound the number

of vertices controlled by the cops by the sum of the degrees of the vertices occupied by the cops

- but this approach simply never works, so we are advised to find something better than that.

Suppose a cop is on vertex u and controls some x ∈ X. Then d(u, r) ∈ {s− 1, s, s+ 1}. Which

one is it from the three possibilities? If d(u, r) = s − 1 then u ∈ A which is not possible since

there are no cops in A. Can we exclude another one of the two remaining possibilities? Sure - if

we assume G is bipartite then d(u, r) 6= s. So let’s assume G is bipartite. Then d(u, r) = s+ 1,

and hence x lies on a shortest u − r-path. So assume the graph has the property that if two

vertices are at distance s+1 then there are at most m shortest u−r-paths, where m is a suitable

constant we shall specify later. If we assume this property then any cop can control at most m

vertices in X.

This is a good start - but what we really have to prove is that there exists an x ∈ X with

lots of uncontrolled escaping pairs. What do we mean by that? If S is any set of vertices, then

let NS
k (u) denote the set of vertices v at distance precisely k from u such that all shortest u− v

paths avoid the set S ∩N(u). By an escaping pair we mean a pair (x, y) of vertices with x ∈ X
and y ∈ NA

s (x). We call x the head and y the tail of the escaping pair. We say an escaping pair

(x, y) is uncontrolled if all shortest x− y paths are uncontrolled. So we just need to prove that

there is an x ∈ X which is the head of at least M uncontrolled escaping pairs, since then x is

safe and the robber can move there in his round.

If (x, y) is an escaping pair, we call every shortest path between them an escaping path. A

natural strategy at this point is to try to get estimates on the number of escaping paths, and the

number of escaping paths controlled by cops, and then hopefully we can deduce something from
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that. So let’s do that. Pick a vertex v - how many escaping paths contain v? Let u1u2 . . . us+1 be

an escaping path with u1 ∈ X, u2 /∈ A, and assume v = ui. First assume i 6= 1. Then if d is the

maximum degree of the graph, there are at most d choices for u2, . . . , ui−1, ui+1, . . . , us+1. As

we showed above, once we have chosen u2 there are at most m choices for u1. So if v /∈ X then

there are s choices for its position in an escaping path, hence v is on at most ds−1ms escaping

paths. If v ∈ X then there are at most d choices for all other vertices, hence v is the first vertex

of at most ds escaping paths, hence v is on at most ds + ds−1ms escaping paths.

How many escaping paths do the cops control? We have shown before that a cop controls

at most m vertices in X, giving at most m(ds + ds−1ms) controlled paths. Through the other

vertices he can control at most ds−1ms paths. He controls at most d + 1 vertices, hence he

controls at most m(ds + ds−1ms) + (d + 1 −m)ds−1ms ≤ 3msds escaping paths. Hence c cops

can control at most 3msdsc escaping paths. Controlling an escaping path decreases the number

of uncontrolled escaping pairs by at most 2, hence the number of controlled escaping pairs is at

most 6msdsc.

Assume for simplicity that every vertex x ∈ X is the head of at least 2M escaping pairs. If

there is no x ∈ X with at least M uncontrolled escaping pairs then every x ∈ X is the head of

at least M controlled escaping pairs. Since |X| = M , this gives at least M2 controlled escaping

pairs. Assuming M2 > 6msdsc we established the existence of a safe vertex in X and the robber

may escape forever. �

Going through the above proof and collecting the conditions we dropped on the way, what we

really proved is this:

Theorem 5.1.2. Let s, d,m be positive integers and q be a positive real such that qds/2 is an

integer larger than m. Let G be a regular bipartite graph of degree d and diameter larger than s

with the following properties:

(1) For every two vertices u, v of G of at most s + 1, there are at most m distinct shortest

u− v-paths.

(2) For every vertex u of G and every subset A of size at most m, we have |NA
s (u)| ≥ qds.

Then, assuming the robber has speed s, the cop number of G is at least q2ds/24ms.

Proof. Set M = qds/2 in the above proof. A safe starting position exists since the diameter of

G is larger than s. Since for any x ∈ X we have |A ∩ N(x)| ≤ m, the rest of the above proof

goes through. �

So now we have a theorem that could be used to find graphs of high cop number. All we need

to do is find some graphs which have the properties described in Theorem 5.1.2. When thinking

about regular bipartite graphs of high diameter, the following design comes to mind:

5.2. The construction. Let k, s be positive integers, and d = 2k. Let x1, x2, . . . , xd be all the

elements of GF (2k), written as column vectors of length k over Z2. Let H be the following

1 + k(s+ 1) by d matrix over the field Z2:
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H =



1 1 · · · 1

x1 x2 · · · xd

x31 x32 · · · x3d
...

...
. . .

...

x2s+1
1 x2s+1

2 · · · x2s+1
d


Let S be the set of columns of H, and let G be the graph with vertex set Z1+k(s+1)

2 and with

u, v adjacent if u− v ∈ S. This seems to be a good guess – G is clearly d-regular, since |S| = d,

and bipartite, since two vertices with the same first coordinate cannot be connected. By fixing d

and increasing s we are increasing the order of G while not changing the degrees, hence we can

make sure the graph has large diameter. Let’s hope the other properties work out as well!

First of all, it is not obvious why G is connected. For that, we need to prove that every

element of Z1+k(s+1)
2 can be written as a linear combination of vectors in S. That is, we need to

show that the rows of H are independent over Z2. Some coding knowledge comes in handy - the

rows 2, 3, . . . , 1 + k(s+ 1) generate the dual of a BCH code, and hence all rows are independent

(see [24]).

We need to have a control over the number of paths connecting two close vertices. We can

do this if d is large compared to s. In fact, we can show that for every two vertices u, v at

distance at most s+ 1 there are at most (s+ 1)! distinct shortest u− v-paths. To see this, note

that if u, v have distance m, then every path connecting them corresponds to a unique ordered

representation of the form

u− v = s1 + s2 + · · ·+ sm,

where si ∈ S for all i. Moreover, in such a representation all si-s are distinct, since otherwise we

could delete them and get a shorter representation. Suppose we have another representation

u− v = s′1 + s′2 + . . . s′m,

then since any (2s+2) elements of S are independent (see [12], Lemma 16.2.2), we conclude that

the s′i-s are just a permutation of the si-s. Hence the number of u− v-paths is just m!.

From the linear independence of any (2s+2) columns of S it follows that G has high diameter.

Indeed, let e1, . . . , es+1 be any distinct elements from S, and let x be their sum. Then the distance

between 0 and x is at least s+ 1.

How about proving that NA
s (u) is large if |A| is bounded? Suppose |A| ≤ (s + 1)!, and

A ⊂ N(u). Let B = {x ∈ S : u + x /∈ A}. Then |B| ≥ d − |A|. Pick any s-subset of B,

say a1, a2, . . . , as. Then u + a1 + · · · + as ∈ NA
s (u), and since any 2s + 2 elements of B are

independent, any s-subset gives a different element. Hence if d ≥ 2(s+ 1)! we get

|NA
s (u)| ≥

(
d− |A|
s

)
≥
(
d− |A|
s

)s
≥ ds

(2s)s

.

We know enough now, let’s finish this off!
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Theorem 5.2.1. Let s be the speed of the robber. For every n there exists a connected graph of

order n with c(G) = Ω(ns/(s+1))

Proof. First pick k0 large enough such that d = 2k0 ≥ 2(s + 1)! and ds > 4(s + 1)!(2s)s. We

will only consider the values of n larger than 21+k0(s+1). Let k be the largest integer such that

21+k(s+1) ≤ n, and let n0 = 21+k(s+1). (We will construct a graph of order n0, and then add

some ’useless’ vertices to get a graph of order n. This will not change our asymptotic conclusions

since n < 2s+1n0 and so n = Θ(n0).)

Let G be the graph described above, with parameters k, s. Now all we need to check is that

G satisfies the conditions in 5.1.2. Let m = (s + 1)!, and define q by qds = 2b ds

2(2s)s c. Then G

is a d-regular bipartite graph of diameter larger than s, it has n0 = O(ds+1) vertices, between

any two vertices at distance at most s + 1 there are at most m distinct shortest paths, and

for any u and any set B of size at most m we have |NB
s (u)| ≥ (d/2s)s ≥ qds. The way we

defined q we know that q/2 is an integer, and q/2 ≥ ds

4(2s)s > m where the last inequality follows

from our lower bounds on k0 and hence d. Hence all conditions are satisfied. We conclude that

c(G) = Ω(ds) = Ω
(
n
s/(s+1)
0

)
= Ω

(
ns/(s+1)

)
. Now take a path with n − n0 vertices and join it

to any vertex of G to obtain G′. Then |G′| has order n and c(G) = c(G′).

�

6. Conclusion

We are still very far from solving Meyniel’s conjecture, stating that c(n) ≤ C
√
n for all graphs.

We know that the conjecture holds for random graphs [19], diameter two graphs [2, 26], planar

graphs [11] and several other graph classes (see [6]). There is some evidence that in fact c(n) ≤
√
n

should be true, i.e. that the correct value of C in the above should be one [26]. However, the

best general upper bounds are still very far away from this – we only know c(n) = O(n1−o(1)).

If we consider a robber of speed s, then the corresponding conjecture is cs(n) = O(ns/(s+1)),

which would be best possible [9], but proving this upper bound is completely open.
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